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Single band-edge states can trap light and function as high-quality optical feedback for microscale lasers and nanolasers.
However, access to more than a single band-edge mode for nanolasing has not been possible because of limited cavity
designs. Here, we describe how plasmonic superlattices—finite-arrays of nanoparticles (patches) grouped into microscale
arrays—can support multiple band-edge modes capable of multi-modal nanolasing at programmed emission wavelengths
and with large mode spacings. Different lasing modes show distinct input–output light behaviour and decay dynamics that
can be tailored by nanoparticle size. By modelling the superlattice nanolasers with a four-level gain system and a time-
domain approach, we reveal that the accumulation of population inversion at plasmonic hot spots can be spatially
modulated by the diffractive coupling order of the patches. Moreover, we show that symmetry-broken superlattices can
sustain switchable nanolasing between a single mode and multiple modes.

Engineering electronic and photonic band structures can lead to
controlled emission wavelengths and output efficiencies of
semiconductor materials and optical devices1–3. Slow light

trapped at band-edge states can support standing waves that have
also functioned as high-quality optical feedback for lasing from
photonic bandgap crystals4,5, metal–dielectric waveguides6 and
metal nanoparticle arrays7–10. Compared with semiconducting
lasers, plasmon nanolasers can support ultrasmall mode volumes
that can beat the diffraction limit by exploiting localized surface
plasmons from single nanoparticles (NPs)11–13 and surface plasmon
polaritons on metal films14,15; however, most cavity architectures
suffer from large radiative losses and lack beam directionality.
Moreover, unwanted multi-modal nanolasing from plasmonic lasers
exhibits both uncontrolled mode spacing and output behaviour14–17.

Different from periodic dielectric structures that support both
upper and lower band edges in distributed feedback lasers18, peri-
odic metal NP arrays in a homogeneous dielectric environment
exhibit only single band-edge lattice plasmons that are characterized
by suppressed radiative loss and subwavelength localized field
enhancement around the NPs19–21. Recently, we discovered that
high-quality band-edge lattice plasmons (quality factor Q > 200)
can contribute to single-mode lasing at room temperature with
directional emission and lasing wavelengths that can be tuned in
real time7,9. To achieve multiplexing, multiple optical frequencies
with well-defined and separated spacings are needed to increase
storage capability and facilitate optical processing22–24.

Here, we show how plasmonic NP superlattices enable access to
multiple band-edges at zero and non-zero wavevectors that can be
exploited for multi-modal lasing with characteristics distinct from
traditional photonic and plasmonic lasers. Compared with multi-
modal lasing that usually lacks tunability, superlattice plasmons
can achieve accurate control over the wavelength and spectral separ-
ation of multiple lasing modes. Moreover, tuning NP size can
provide an additional degree of freedom for manipulating the
output behaviour of different lasing modes. As a result of symmetry

breaking of the NP superlattice, dynamically switchable lasing
between single and multiple modes was achieved. Our modelling
of multi-modal lasing based on a four-level gain system and a
time-domain approach not only showed excellent agreement with
experiments but also revealed that the switchable lasing can be
attributed to the spatial distribution of population inversion at
dipolar plasmonic hot spots.

Lasing emission from superlattice nanoparticle arrays
Figure 1 compares the linear optical properties and lasing emission
from gold NP superlattices and single-lattice NP arrays. The
NPs were supported on substrates of fused silica (refractive index
n = 1.48) and liquid gain superstrates of IR-140 dye in dimethyl
sulfoxide (DMSO, n = 1.46) to achieve the highest-quality
lattice plasmon modes (Methods). Superlattices with NP spacing
a0 = 600 nm and patch periodicity A0 = 24 µm were fabricated over
centimetre-squared areas by multiscale nanofabrication tools that
combine contact and phase-shifting photolithography25,26 (Fig. 1a).
A0 was selected such that the gain emission (centred at 860 nm,
orange curve) overlapped with different high-order superlattice (SL)
plasmons λaSL = 864 nm and λc1SL = 881 nm (blue curve), as determined
by coupling of single-patch lattice plasmons andBraggmodes (λaSL and
λc1SL would be λ40SL and λ39SL for A0 = 24 µm according to indexing based
on diffractive coupling)26. λaSL exhibited the same resonance wave-
length and in-phase oscillations between NPs as that of the single
band-edge lattice plasmonmode λL in a single-lattice array, although
the full-width at half-maximum (FWHM) of the dip was larger
(Fig. 1b). The additional mode at λc1SL showed overall single-period
phase oscillations between adjacent NPs within a single patch
because of patch–patch coupling (Supplementary Fig. 1).

Consistent with previous work7,9, the high-quality band-
edge lattice plasmon at λL contributed to a single lasing mode at
λIL = 862 nm with directional emission and an extremely narrow
linewidth (FWHM= 0.3 nm). In contrast, multiple lasing peaks at
λISL = 863 nm, λIISL = 874 nm and λIIISL = 884 nm were observed in
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superlattices with large modal spacing (Δλ = 10–11 nm) and narrow
spectral linewidths (FWHM< 0.5 nm). The lasing mode λISL origi-
nated from the SL plasmon mode λaSL, similar to how the wavelength
of the band-edge lattice plasmon mode λL in single-lattice NP arrays
determined the lasing wavelength λIL (refs 25,26). λIISL and λIIISL were
new lasing modes that can uniquely be attributed to patch–patch
coupling. λIIISL can be correlated with the SL plasmon at λc1SL based
on good spectral overlap and emission position, but surprisingly,
λIISL was absent in the transmission spectrum even though lasing
emission at that wavelength was evident.

Multi-modal superlattice lasing at band-edge modes
To understand the origin of the different lasing modes, we first
determined the optical band structure of NP superlattices by stitch-
ing together zero-order angle-resolved transmission spectra
(Methods). Compared with the single band-edge state at λL in
single-lattice NP arrays (located at in-plane wavevector k∥ = 0),
multiple band-edge modes were observed under transverse electric
(TE) polarization in NP superlattices not only at k∥ = 0 (λaSL,λ

c1
SL),

but also at k∥ = ±0.13, ±0.26 and ±0.39 µm−1 (λb1SL,λ
c2
SL,λ

b2
SL) (Fig. 2a).

Band-edge modes at both zero and non-zero k∥ arose from coupling
of localized surface plasmons of the NPs to different diffraction
modes from the hierarchical structure (A0). Based on finite-difference
time-domain (FDTD) methods, simulated band structures showed
excellent agreement with measurements (Supplementary Fig. 3).

We indexed different Bragg modes of the superlattice as [kx ky kx′
ky′] in reciprocal space, where kx (ky) and kx′ (ky′) denoted grating
vectors from the NP (k = 2π/a0) and patch spacing (k′ = 2π/A0)
(Supplementary Fig. 4). At λaSL (k∥ = 0), two propagating Bragg
modes [1000] and [�1000] with opposite wavevectors formed a
standing wave. At λb1SL (k∥ = ±0.13 µm−1), an overall 0.5kx′ from
two coupled Bragg modes [�1000] and [10�10] compensated for
non-zero k∥. Therefore, plasmonic NP superlattices can exhibit
standing-wave modes with very low group velocities (υg = δw/δk∥,
where w is the angular frequency) at all band edges at
λaSL, λ

b1
SL, λ

b2
SL, λ

c1
SL, λ

c2
SL. The electric field enhancement was localized

within the subwavelength vicinity of the NPs, where the fields

oscillated with nearly the same phase and amplitude (Fig. 2b and
Supplementary Fig. 4). Band-edge modes at k∥ ≠ 0 only exist for
plasmonic NP superlattices and are not observed for dielectric
NPs because of weak near-field coupling between patches in the
visible and near-infrared regions (Supplementary Figs 5 and 6).

Side-by-side comparison of an angle-resolved lasing emission
map and band structure revealed that superlattice lasing modes
had a one-to-one correspondence with the band-edge modes
(Fig. 2c). For single-lattice arrays, a single lasing mode appeared
at the k∥ = 0 band edge, and in the emission map, a single lasing
point was observed at the detection angle θD = 0°, normal to the
NP arrays (Supplementary Fig. 7). In contrast, for NP super-
lattices, lasing action at λISL and λIIISL (from band edges at λaSL and
λc1SL, respectively) emerged at θD = 0°, while λIISL matched well with
band edges at k∥ ≠ 0, which suggests that standing waves at both
zero and non-zero k∥ can support lasing action. Although the
band edge at λb2SL was barely resolved in the measured band structure,
lasing action at λIISL was still observed in the emission map, which
indicates how lasing could serve as a probe to identify band-edge
points with a high local density of optical states.

Plasmonic superlattice lasers also exhibit distinct spatial coher-
ence characteristics (Methods). Besides the central, single spot at
θD = 0° similar to single-lattice NP arrays, multiple satellite spots
appeared on each side of the central beam (at θD = ±1.04° and
±2.08°) (Fig. 2d). The angular correlation between band structure
and the angle-resolved emission map along x (Fig. 2c) identified
that lasing at λISL and λIIISL appeared at θD = 0° and ±2.08°, while
λIISL contributed to the left and right satellite beams at θD = ±1.04°.
The emission map acquired by sweeping θD along y verified that
under TE polarization, the multiple spots along y resulted from dif-
fractive effects of patch–patch interactions, and the alternating of
different lasing wavelengths among spots only appeared along x
(Supplementary Fig. 8). All emission beams exhibited only minor
beam divergence (<1°), which in combination with the narrow spectral
linewidth (<0.5 nm) supports the coherence of each lasing mode.

To understand the real-time lasing build-up from plasmonic NP
superlattices, we combined the FDTD method with a four-level
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Figure 1 | Multi-modal nanolasing in gold nanoparticle superlattices surrounded by liquid dye solutions. a, Schematic (left), scanning electron microscopy
(SEM) image (middle) and measured lasing emission (right) from NP superlattices with NP spacing a0 = 600 nm, NP diameter d = 120 nm, height h = 50 nm,
patch side length l= 18 µm and patch periodicity A0 = 24 µm embedded in IR-140-DMSO (concentration C =0.6 mM). b, Same as a, but for single-lattice arrays
with the same NP diameter d= 120 nm, height h= 50 nm and spacing a0 = 600 nm. IR-140-DMSO superstrates surrounding single-lattice and superlattice NP
arrays were pumped with an 800-nm femtosecond-pulsed laser, and light was collected normal to the sample surface (Methods and Supplementary Fig. 2).
FWHM of lattice plasmon resonances is 6.2 nm at λaSL and 4.2 nm at λL(right). In the schematics (left), the IR-140-DMSO gain media is shown in pink. For the
measured lasing emission (right), linear optical properties are in blue, dye emission is in orange with intensity rescaled, and lasing emission is in black.
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one-electron system of dye molecules subject to the Pauli exclusion
principle (Methods and Supplementary Fig. 9). FDTD simulations
with the Pauli exclusion principle showed lasing action in single-
lattice arrays comparable to that of our previous method7 that did
not consider electron spin; only a minor change of oscillation ampli-
tude in the time-dependent population inversion was observed
(Supplementary Fig. 10). Pumping of the ground electronic state
resulted in lasing modes at λISL and λIIISL for k∥ = 0 with wavelengths
that can be correlated with SL plasmons λaSL + λc1SL and λc2SL
(Supplementary Fig. 11). Note that the output spectrum only
showed two lasing modes λISL and λIIISL at k∥ = 0 and could not
reveal λIISL because this time-domain approach cannot represent SL
plasmons at different k∥ simultaneously. However, simulations
with a plane-wave incident at θI = ±1.04° and ±2.08° could
produce lasing at λIISL (from λb1SL at k∥ = ±0.13 µm−1) and λIIISL (from
λc1SL at k∥ = ±0.26 µm−1) by introducing a phase shift at the micro-
scale unit-cell boundary (Fig. 2e). Modelling of lasing action from
large-unit-cell lattices (tens of micrometres) and at non-zero k∥
was not possible in our previous home-built FDTD codes because
of computational efficiency7,9.

Output behaviour of superlattice lasing modes
Mode competition is common in semiconductor lasers, where mul-
tiple cavity modes compete for available gain; hence, oscillations in
one mode generally reduce and suppress gain for others27. Distinct
from traditional systems, plasmonic NP superlattices can support
multiple lasing modes simultaneously because of a combination of
factors: (i) the large gain bandwidth of the dye (∼50 nm); (ii) the
short pulsed laser excitation (∼90 fs) that avoids accumulation of
mode competition over limited photon travelling cycles; (iii) widely
separated spectral resonances of SL plasmons (∼10 nm); and

(iv) different near-field spatial overlap of SL modes (Supplementary
Fig. 1) with the gain media27. Since all band-edge wavelengths for
this particular NP superlattice (A0 = 24 µm; l = 18 µm)—λaSL, λ

b1
SL,

λb2SL, λ
c1
SL, λ

c2
SL—were within the gain envelope, multi-modal lasing

could exist and be captured simultaneously by a single detector
(collection angle around 3°).

At low pump powers, λIISL at k∥ ≠ 0 and λIIISL at k∥ = 0 emerged
with lasing thresholds lower than λISL (Fig. 3a and Supplementary
Movie 1). Interestingly, λISL surpassed λIIISL at 0.35 mJ cm−2 and
continued to increase, while λIISL and λIIISL saturated at high pump
fluence (Fig. 3b,c); these trends were similar for all NP superlattices
tested (Supplementary Fig. 12). In FDTD modelling at k∥ = 0, we
also observed an early rise of λIIISL but dominant growth of λISL at
high pump power (Fig. 3c and Supplementary Fig. 13). These
power-dependent output behaviours may be attributed to the
near-field enhancement of SL plasmons and their mode quality
Q (= λ

Δλ, where λ represents the resonance wavelength and Δλ the
linewidth).Qλc1

= 197 is slightly larger thanQλa
= 139, which suggests

that photons from λc1SL are trapped within the cavity for more
cycles than λaSL such that there is more available gain at λc1SL at low
pump powers (Supplementary Fig. 14). Thus, lasing action was first
observed at λIISL and λIIISL (from band edges at λb1SL, λ

b2
SL, λ

c1
SL and

λc2SL). At high pump powers, λISL dominated since the mode at λaSL
exhibited a seven-fold stronger local field that enhanced the stimulated
emission term in the rate equations (Supplementary Fig. 9b).

Unlike existing photonics and plasmonic lasers that exhibit fixed
intensity ratios across the different modes28 or a single, dominant
mode with increased pump power15, the output behaviour
of SL plasmon lasing peaks can be uniquely controlled by manip-
ulating the near-field intensity of the individual modes. For
example, by increasing NP size from d = 120 nm to d = 125 nm
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(Fig. 3d), all band-edge modes red-shifted and those at longer
wavelengths had higher intensity (Supplementary Fig. 15). The
stronger local E field at λc1SL led to stronger stimulated emission at
λIIISL; thus, λ

II
SL and λIIISL showed a dominant increase at high pump

powers while λISL remained relatively weak and did not surpass
λIIISL in simulation or experiment (Fig. 3e,f and Supplementary
Movie 2). Note that λIISL was located closer to the dye emission
centre and could show stronger lasing emission than λISL and λIIISL.
Moreover, we could modify the available gain by changing
dye concentration and also achieve tailored output behaviour
of the different lasing modes (Supplementary Fig. 16 and
Supplementary Movies 3 and 4). Such modular control over
the input–output light curves of each lasing mode based on cavity
resonances and gain can in principle lead to unique designs of
multi-modal lasers.

Time-correlated photoluminescence (PL) measurements
revealed distinct ultrafast decay dynamics of the different

superlattice lasing modes (Methods). Below the lasing threshold,
PL from the IR-140-DMSO on NP superlattices exhibited an intrin-
sically long decay lifetime (834 ps) (Fig. 4a). Above threshold, the
decay lifetime of photons from the dye can be significantly
reduced by the faster process of stimulated emission7,9 and modu-
lated by the near-field distribution and mode quality of SL plas-
mons. λaSL and λL showed the same in-phase NP oscillations in the
near field, and we observed similar ultrashort decay lifetimes
between λISL (16 ps) and λIL (13 ps) (Fig. 4b,c). In contrast, the λIISL
lasing mode from patch–patch coupling exhibited a longer decay
lifetime (41 ps) because photons could be trapped in the λb1SL
mode for a longer time (Qλb1

> Qλa
; Supplementary Fig. 14).

Specifically, λISL emerged earlier (at 27 ps) than λIISL (at 35 ps) in
part because the stronger near field at λaSL led to faster population
inversion build-up for lasing; λISL also decayed faster since these
λISL photons did not exhibit long cavity lifetimes through non-radia-
tive decay from the metal NPs.
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Plasmonic superlattices can be fabricated with precise control
over patch–patch spacing; hence, we can define the spectral location
and spacing of the multiple lasing modes (Supplementary Fig. 17).
As we increased A0 from 18 to 24 to 36 µm, the spectral separation
between band edges was reduced, as was the lasing modal spacing
(from 14 to 11 to 7 nm, respectively, Supplementary Fig. 18).
Consistent with Fig. 3a, λIISL (k∥ ≠ 0) and λIIISL (k∥ = 0) saturated at high
pump powers while intensity at λISL (k∥ = 0) continued to increase
(Supplementary Fig. 19). The far-field spatial distribution of the
different lasing modes could also be tailored by changing A0. For
example, at A0 = 36 µm, multiple satellite spots over smaller
detection angles (θD = ±0.69° at λb1SL) were observed compared
with that for A0 = 24 µm (θD = ±1.04°).

Switchable lasing from symmetry-broken superlattices
Besides accurate spectral control of multiple nanolasing modes by
tuning patch–patch spacing, we also spatially engineered band-
edge modes with a symmetry-broken superlattice. We designed
NP line patches with the same a0 and A0 as the 2D case (Fig. 1a)
along x, while the structure along y only had a periodicity a0, the
same as the single-lattice array (Fig. 5a). Since plasmonic NPs

exhibit dipolar oscillations along the direction of incident light,
symmetry-broken cavity structures enable polarization- and orien-
tation-dependent band structures with either single or multiple
band-edge modes (Supplementary Fig. 20). With pump polarization
epump along y, and line axis eline along x (eline ⊥ epump), we observed a
single lasing mode at λISL = 862 nm (Fig. 5b) from the single band-
edge (k∥ = 0, Fig. 5c) and multiple spots along y from patch–patch
diffractive interference. Conversely, when eline ∥ epump (sample
rotated in-plane), multiple lasing modes arose at λISL = 860 nm
(k∥ = 0), λIISL = 871 nm (k∥ ≠ 0) and λIIISL = 881 nm (k∥ = 0) from the
multiple band-edges. In the far field, these lasing modes were
distributed along x, and no satellite spots appeared along y
because there was no A0; the power-dependent output behaviour
was similar to that of 2D superlattices (Supplementary Movie 5).
As the sample was rotated in the x–y plane, switchable nanolasing
between single and multiple lasing modes (Supplementary Movie 6)
agreed with the evolution of band structure from single to multiple
band-edges (Supplementary Fig. 21).

The underlying mechanism of switchable lasing in the NP line
patches can be attributed to the asymmetric spatial distribution of
population inversion at the plasmonic hot spots. The four-level
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Figure 5 | Dynamic control of band-edge modes in symmetry-broken plasmonic line patches leading to switchable nanolasing between single and
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model showed that population inversion accumulated only at
dipolar hot spots along the pump polarization (y) and increased
faster when eline ⊥ epump as a result of larger numbers of NPs
coupling along x (Supplementary Fig. 22). Although dye molecules
were randomly orientated and incoherent PL emission was indepen-
dent of sample orientation, molecules with transition dipole
moments along the pump polarization were preferentially excited;
hence, the polarization of output lasing emission was along the
polarization of the pump source (Supplementary Fig. 23). By
fixing the sample orientation and changing the pump polarization,
we also observed tunable lasing between single and multiple modes
(Supplementary Fig. 24). Therefore, the lasing output can be dynami-
cally manipulated in rationally designed NP superlattices.

Conclusions
We demonstrated multi-modal nanolasing with controlled, large
modal spacing from gold NP superlattices that support tunable, mul-
tiple band-edge modes at zero and non-zero wavevectors. Our model
based on a four-level system coupled to FDTD calculations fully cap-
tures the multi-modal lasing contributions from zero and off-normal
angles. Compared with conventional micro- and nanostructured
lasers, multi-modal lasing from NP superlattices shows strikingly
different output emission behaviour, spatial coherence and ultrafast
decay dynamics characteristics. Notably, the relative ratios of the
different modes can be tuned by changing NP size and local gain con-
centration. Coherent nanoscale light sources with well-controlled
mode position, spacing and output characteristics can enable multi-
plexing for on-chip photonic devices and offer prospects for multi-
modal laser designs. Moreover, engineering slow light at multiple
band-edges is useful for manipulating strong light–matter inter-
actions for lasing, optical nonlinearities, quantum optics, and other
optical processes.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Fabrication of gold NP superlattices. We fabricated gold NP superlattices with
multiscale patterning26 and compared their lasing properties with those of arrays
with a single periodicity. Gold NP superlattices on glass were fabricated starting with
a series of soft nanofabrication processes referred to as PEEL (photolithography,
etching, electron-beam deposition and lift-off )29. Briefly, we first generated
hierarchical photoresist posts on Si wafers after contact photolithography,
Cr deposition, resist lift-off, and phase-shifting photolithography with a
polydimethylsiloxane (PDMS) mask30. We used a 8-nm Cr layer as an isolation layer
between contact and phase-shifting photolithography to create uniform photoresist
posts within the patch. Hierarchical patterns of photoresist posts were then
transferred into free-standing gold films of hierarchical nanohole arrays with PEEL.
Finally, we created superlattices by gold deposition through the hole-array mask on
glass substrates and then removal of the mask. Note that a 2-nm Cr layer was
deposited before gold for better adhesion between gold NPs and the fused silica
substrate. With multiscale patterning, the patch geometries (A0, l ) and NP spacings
(a0) can be controlled independently by the flexible selection of Cr and PDMS
masks, and the diameters of cylindrical NPs (d) and height (h) can be tuned by
fabrication procedures of phase-shifting photolithography and metal deposition for
hole-array mask.

Lasing measurements. Gold NP arrays embedded with gain IR-140-DMSO were
pumped with a mode-locked Ti:sapphire laser with a regenerative amplifier laser
(800 nm wavelength, 1 kHz repetition rate and 90 fs pulse width) at incident angle of
45°; the circular spot size was 2 mm in diameter (Supplementary Fig. 2). Lasing
signals were collected normal to the sample surface and directed to a charge-coupled
device (CCD) spectrometer (LN2-cooled CCD/Triax 552, Horiba Jobin Yvon,
∼0.15 nm resolution). For angle-resolved emission measurements, we fixed the
sample vertically at the centre of a rotational stage and collected emission signals
within detection angle θD = ±3.5° in 0.33° increments manually (with respect to the
sample surface normal). The collected signals were then directed to a compact
spectrometer (USB 2000, Ocean Optics, 0.3 nm resolution) through an optical
fibre. The far-field emission patterns of multi-modal lasing were analysed by a
high-resolution CCD beam profiler (LBR-HR, Newport, 1.4 megapixel). By placing
the beam profiler at different emission distances (4–6 cm) normal to the sample
surface and a longpass filter (830 nm) in-between to filter the scattering light, we
characterized the beam divergence of multiple lasing modes (Supplementary Fig. 8).

Band structure measurements. We placed the samples vertically at the centre of a
program-controlled rotational stage and collected transmission spectra with various
incident angles θI swept in the x–z plane26. Transmission spectra were collected from
incident angles −3.5° to 3.5° in 0.2° increments using an automated, home-built
National Instruments Lab-VIEW program. Collimated, TE polarized white light
from a halogen lamp (100 W) illuminated the sample with a spot size of 2 mm. The
reflected light was coupled into a bundled optical fibre connected to a Princeton
Instruments Acton SpectraPro2500 spectrometer with a PIXIS:400 CCD detector.
Band structures of the single-lattice and superlattice arrays in wavelength (λ)– and
incident angle (θI) units were constructed by stitching together a series of
angle-resolved transmission spectra and then transferred to energy (E)– and
wavevector (k∥) units by E = hc/λ and k∥ = (2π/λ) sinθI.

Time-resolved photoluminescence (PL). A streak camera was used to characterize
fluence-dependent, wavelength-resolved PL decay experiments and to characterize
different multiple lasing modes. A 2-kHz amplified Ti:sapphire laser operating at

800 nm excited the samples at an incident angle θI = 75°. The PL signals were passed
through 830-nm longpass and neutral density filters and then coupled to a fibre
optic on a rotational stage with samples placed at the circular centre. Fibre-coupled
photons were directed to a 0.15 m grating spectrometer, dispersed with a 150-groove
per mm grating, and detected with a single-photon-sensitive streak camera. The
emission decay lifetime, t, was obtained from fitting the collected data with an
exponential decay function y = y0 + Ae−(x−x0)/t .

FDTD simulations of band structures and multi-modal nanolasing. FDTD
calculations with commercial software (FDTD solution, Lumerical Inc.) were used to
simulate the linear properties of gold NPs. The optical constants of gold were taken
from ref. 31 (400–1,000 nm). A uniform mesh size of 4 nm (x, y and z) was used to
ensure accuracy of electric and magnetic field calculations within the metal NPs.

Simulation of multi-modal lasing was performed by the same software (FDTD
Solutions, Lumerical Inc.), where a four-level one-electron model was integrated
with FDTD for modelling dye molecules and the only available model included the
Pauli exclusion principle. (Details of the model and parameters are provided in
Supplementary Fig. 9.) As a test case, we used a superlattice design with patch
periodicity A0 = 24 µm and patch length l = 18 µm. In the four-level systems, we set
the NP size d as 120 nm and 125 nm, dye concentration C = 1 mM, pump wavelength
at λa = 800 nm and dye emission at λe = 860 nm with bandwidth Δλe = 100 nm, which
is close to experimental conditions. Initially, we pumped the four-level system from the
ground state (population density N0 = 1, N1 =N2 =N3 = 0) and collected all emitted
flux with a plane monitor placed 0.3 µm away on top of the NPs. A more sophisticated
treatment of the dye molecules that would include for mode coupling and mode
competition is beyond the scope of our current four-level model. However, the
non-radiative dephasing rate re in our oscillator equation

d2Pe

dt2
+ re

dPe

dt
+ w2

ePe = ke(N2 − N1)E

where Pe is the net macroscopic polarization and ke is the oscillation parameter
introduces broadening of the radiative emission linewidth, which allows for lasing
(including multi-modal lasing) over a range of wavelengths. By integrating the NP
superlattices with the commercial software, we increased the computation efficiency
dramatically compared with a previously developed home-built FDTD code inMatlab7.
Moreover, we could characterize off-normal emission at non-zero k// by introducing a
phase shift at the unit boundary with Bloch boundary conditions, which is not feasible
in the home-built code.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author upon
reasonable request.
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